Velocity distribution along the coronary arteries in a 3D fluid structure interaction model of the aortic valve

نویسندگان

  • Soroush Nobari
  • Rosaire Mongrain
  • Richard Leask
  • Raymond Cartier
چکیده

INTRODUCTION In recent years we have improved our previous fluid structure interaction (FSI) model of aortic valve first by addition of the sinuses of valsalva and now by expanding it to include the coronary structure. This FSI model will enable us to retrieve data related to either the fluid domain such as flow patterns, velocity distribution, perfusion level into the coronaries or the structural domain such as distensibility, maximum stress and leaflet dynamics. Inclusion of the coronaries allows us to investigate many interesting aspects which were not possible with the previously established models by other groups. The structural portion of this model is presented in Figure 1. The goal of the present study is to include the flow in the coronary arteries in order to derive hemodynamic information in these structures specifically velocity distribution. A hypothesis is that valve dynamics, root geometry and tissue properties have significant impact on perfusion levels and velocity profile in the coronaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

Statistical analysis of the association between rheological properties of blood and atherosclerosis

The aim of this study is to investigate the effects of non-Newtonian blood rheology models on the wall shear stress (WSS) distribution in a cohort of patients-specific coronary arteries. Twenty patients with diseased left anterior descending (LAD) coronary arteries (with varying degrees of stenosis severity from mild to severe) who underwent angiography and in-vivo pressure measurements were se...

متن کامل

Numerical Investigation of Angulation Effects in Stenosed Renal Arteries

Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...

متن کامل

Fluid-Structure Interaction of Vibrating Composite Piezoelectric Plates Using Exponential Shear Deformation Theory

In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic ...

متن کامل

Correlation Between Aortic Valve Sclerosis and Coronary Artery Disease: A Cross - Sectional Study

  Introduction: Aortic valve sclerosisis considered as a manifestation of coronary atherosclerosis. Recent studies demonstrated an association between aortic valve sclerosis and obstructive coronary artery disease. The purpose of this study was to evaluatethe correlation betweenaortic valve sclerosis andobstructive coronary artery disease and the extent of coronary artery disease in patients ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011